Monday, August 15, 2016

Fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives - Part 1

On the outskirts of Beijing, a small limestone mountain named Dragon Bone Hill rises above the surrounding sprawl. Along the northern side, a path leads up to some fenced-off caves that draw 150,000 visitors each year, from schoolchildren to grey-haired pensioners. It was here, in 1929, that researchers discovered a nearly complete ancient skull that they determined was roughly half a million years old. Dubbed Peking Man, it was among the earliest human remains ever uncovered, and it helped to convince many researchers that humanity first evolved in Asia.

Since then, the central importance of Peking Man has faded. Although modern dating methods put the fossil even earlier—at up to 780,000 years old—the specimen has been eclipsed by discoveries in Africa that have yielded much older remains of ancient human relatives. Such finds have cemented Africa's status as the cradle of humanity—the place from which modern humans and their predecessors spread around the globe—and relegated Asia to a kind of evolutionary cul-de-sac.

But the tale of Peking Man has haunted generations of Chinese researchers, who have struggled to understand its relationship to modern humans. "It's a story without an ending," says Wu Xinzhi, a palaeontologist at the Chinese Academy of Sciences' Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) in Beijing. They wonder whether the descendants of Peking Man and fellow members of the species Homo erectus died out or evolved into a more modern species, and whether they contributed to the gene pool of China today.

Keen to get to the bottom of its people's ancestry, China has in the past decade stepped up its efforts to uncover evidence of early humans across the country. It is reanalysing old fossil finds and pouring tens of millions of dollars a year into excavations. And the government is setting up a US$1.1-million laboratory at the IVPP to extract and sequence ancient DNA.

The investment comes at a time when palaeoanthropologists across the globe are starting to pay more attention to Asian fossils and how they relate to other early hominins—creatures that are more closely related to humans than to chimps. Finds in China and other parts of Asia have made it clear that a dazzling variety of Homo species once roamed the continent. And they are challenging conventional ideas about the evolutionary history of humanity.

"Many Western scientists tend to see Asian fossils and artefacts through the prism of what was happening in Africa and Europe," says Wu. Those other continents have historically drawn more attention in studies of human evolution because of the antiquity of fossil finds there, and because they are closer to major palaeoanthropology research institutions, he says. "But it's increasingly clear that many Asian materials cannot fit into the traditional narrative of human evolution."

Chris Stringer, a palaeoanthropologist at the Natural History Museum in London, agrees. "Asia has been a forgotten continent," he says. "Its role in human evolution may have been largely under-appreciated."

Evolving story

In its typical form, the story of Homo sapiens starts in Africa. The exact details vary from one telling to another, but the key characters and events generally remain the same. And the title is always 'Out of Africa'.

In this standard view of human evolution, H. erectus first evolved there more than 2 million years ago (see 'Two routes for human evolution'). Then, some time before 600,000 years ago, it gave rise to a new species: Homo heidelbergensis, the oldest remains of which have been found in Ethiopia. About 400,000 years ago, some members of H. heidelbergensis left Africa and split into two branches: one ventured into the Middle East and Europe, where it evolved into Neanderthals; the other went east, where members became Denisovans—a group first discovered in Siberia in 2010. The remaining population of H. heidelbergensis in Africa eventually evolved into our own species, H. sapiens, about 200,000 years ago. Then these early humans expanded their range to Eurasia 60,000 years ago, where they replaced local hominins with a minuscule amount of interbreeding.

A hallmark of H. heidelbergensis—the potential common ancestor of Neanderthals, Denisovans and modern humans—is that individuals have a mixture of primitive and modern features. Like more archaic lineages, H. heidelbergensis has a massive brow ridge and no chin. But it also resembles H. sapiens, with its smaller teeth and bigger braincase. Most researchers have viewed H. heidelbergensis—or something similar—as a transitional form between H. erectus and H. sapiens.

Unfortunately, fossil evidence from this period, the dawn of the human race, is scarce and often ambiguous. It is the least understood episode in human evolution, says Russell Ciochon, a palaeoanthropologist at the University of Iowa in Iowa City. "But it's central to our understanding of humanity's ultimate origin."

The tale is further muddled by Chinese fossils analysed over the past four decades, which cast doubt over the linear progression from African H. erectus to modern humans. They show that, between roughly 900,000 and 125,000 years ago, east Asia was teeming with hominins endowed with features that would place them somewhere between H. erectus and H. sapiens, says Wu (see 'Ancient human sites').

"Those fossils are a big mystery," says Ciochon. "They clearly represent more advanced species than H. erectus, but nobody knows what they are because they don't seem to fit into any categories we know."

The fossils' transitional characteristics have prompted researchers such as Stringer to lump them with H. heidelbergensis. Because the oldest of these forms, two skulls uncovered in Yunxian in Hubei province, date back 900,000 years1, 2, Stringer even suggests that H. heidelbergensis might have originated in Asia and then spread to other continents.

But many researchers, including most Chinese palaeontologists, contend that the materials from China are different from European and African H. heidelbergensis fossils, despite some apparent similarities. One nearly complete skull unearthed at Dali in Shaanxi province and dated to 250,000 years ago, has a bigger braincase, a shorter face and a lower cheekbone than most H. heidelbergensis specimens3, suggesting that the species was more advanced.

Such transitional forms persisted for hundreds of thousands of years in China, until species appeared with such modern traits that some researchers have classified them as H. sapiens. One of the most recent of these is represented by two teeth and a lower jawbone, dating to about 100,000 years ago, unearthed in 2007 by IVPP palaeoanthropologist Liu Wu and his colleagues4. Discovered in Zhirendong, a cave in Guangxi province, the jaw has a classic modern-human appearance, but retains some archaic features of Peking Man, such as a more robust build and a less-protruding chin.

Most Chinese palaeontologists—and a few ardent supporters from the West—think that the transitional fossils are evidence that Peking Man was an ancestor of modern Asian people. In this model, known as multiregionalism or continuity with hybridization, hominins descended from H. erectus in Asia interbred with incoming groups from Africa and other parts of Eurasia, and their progeny gave rise to the ancestors of modern east Asians, says Wu.

Support for this idea also comes from artefacts in China. In Europe and Africa, stone tools changed markedly over time, but hominins in China used the same type of simple stone instruments from about 1.7 million years ago to 10,000 years ago. According to Gao Xing, an archaeologist at the IVPP, this suggests that local hominins evolved continuously, with little influence from outside populations.
_________________
Reference:

Phys.org. 2016. “Fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives”. Phys.org. Posted: July 15, 2016. Available online: http://phys.org/news/2016-07-fossil-china-ideas-evolution-modern.html

No comments: